

BG/Q Architecture

Scott Parker
Mira Performance Boot Camp
5/21/2013
Argonne Leadership Computing Facility
Argonne National Laboratory

Argonne and the Blue Gene

- **2005**:
 - Argonne accepts 1 rack (1024 nodes) of Blue Gene/L (5.6 TF)
- **2006**:
 - Argonne Leadership Computing Facility (ALCF) created
- **2008:**
 - ALCF accepts 40 racks (160k nodes) of Blue Gene/P (557 TF)
- **2009**:
 - ALCF approved for 10 petaflop system to be delivered in 2012
- **7/2012**:
 - 48 racks of Mira Blue Gene/Q hardware delivered to ALCF
- **9/2012**:
 - 24 racks accepted
- **12/2012:**
 - full 48 racks accepted
- **4/2013**:
 - Mira in production

The Past - Intrepid

Intrepid - Blue Gene/P system

- 40,960 nodes / 163,840 cores
- 80 TB memory
- Peak flop rate: 0.56 PF
- Linpack flop rate: 0.45 PF

■ Challenger & Surveyor (T&D) — BG/P systems

- 1k & 1k nodes / 4096 & 4096 cores
- 2 TB & 2 TB of memory
- 27.8 TF & 27.8 TF peak flop rate

Eureka – NVidia S-4 cluster

- Primary use: Visualization and data analysis
- 100 nodes / 800 2.0 GHz Xeon cores
- 3.2 TB memory
- 200 NVIDIA FX5600 GPUs
- Peak flop rate: 100 TF

Storage – Data Direct Networks (DDN) storage arrays

- 6+ PB capability, 80 GB/s bandwidth (GPFS and PVFS)
- 14+ PB of archival storage, 10,000 volume tape archive (HPSS)

The Present - Mira

Mira – BG/Q system

- 49,152 nodes / 786,432 cores
- 768 TB of memory
- Peak flop rate: 10 PF
- Linpack flop rate: 8.1 PF

Cetus & Vesta (T&D) - BG/Q systems

- 1K & 2k nodes / 32k & 64k cores
- 16 TB & 32 TB of memory
- 210 TF & 419 TF peak flop rate

Tukey – Nvidia system

- 100 nodes / 1600 x86 cores/ 200 M2070 GPUs
- 6.4 TB x86 memory / 1.2 TB GPU memory
- Peak flop rate: 220 TF

Storage

- Scratch: 28.8 PB raw capacity, 240 GB/s bw (GPFS)
- Home: 1.8 PB raw capacity, 45 GB/s bw (GPFS)
- Storage upgrade planned in 2015

ALCF BG/Q Systems

A brief history of the Blue Gene

- In 1999 IBM began a \$100 million research project to explore a novel massively parallel architecture
- Initial target was protein folding applications
- Design evolved out of the Cyclops64 and QCDOC architectures
- First Blue Gene/L prototype appeared at #73 on the Top500 on 11/2003
- Blue Gene/L system took #1 on Top500 on 11/2004 (16 Racks at LLNL)
- In 2007 the 2nd generation Blue Gene/P was introduced
- In 2012 the 3rd generation Blue Gene/Q was introduced
- Since being released 9 years ago, on the Top500 list:
 - A Blue Gene was #1 on half of the lists
 - On average 3 of the top 10 machines have been Blue Gene's
- The Blue Gene Q:
 - Currently #2 on the Top500 (LLNL, 96 racks, 20PF)
 - Also holds #4 (ANL), #5 (Juelich), #9 (CINECA)
 - #5 on the Green500

Blue Gene DNA

- Leadership computing power
 - Leading architecture since introduction
- Low speed, low power
 - Embedded PowerPC core with custom SIMD floating point extensions
 - Low frequency (L 700 MHz, P 850 MHz, Q 1.6 GHz)
- Massive parallelism
 - Many cores (L 208k, P 288k, Q 1.5M)
- Fast communication network(s)
 - Torus network (L & P 3D, Q 5D)
- Balance:
 - Processor, network, and memory speeds are well balanced
- Minimal system overhead
 - Simple lightweight OS (CNK) minimizes noise
- Standard Programming Models
 - Fortran, C, C++, & Python languages supported
 - Provides MPI, OpenMP, and Pthreads parallel programming models
- System on a Chip (SoC) & Custom designed ASIC (Application Specific Integrated Circuit)
 - All node components on one chip, except for memory
 - Reduces system complexity and power, improves price / performance
- High Reliability:
 - Sophisticated RAS (reliability, availability, and serviceability)
- Dense packaging
 - 1024 nodes per rack

ALCF and the BG/Q Development

- Over a three year period ANL collaborated with LLNL and IBM in joint research and development for the Blue Gene/Q providing input on design directions
- ANL and LLNL reviewed and provided feedback on several dozen technical milestone documents related to the design of the Blue Gene/Q:
 - "BG/Q Design Trade-Off Study"
 - "BG/Q Core Choice Review"
 - "BG/Q Messaging Software Review"
 - "BG/Q Compute Node Kernel"
 - "API for Prefetcher"
 - _ ...
- Monthly conference calls to discuss BG/Q design aspects
- Quarterly on-site review meetings to review status and progress
- ANL & LLNL Statement-of-Work contracts specifying in detail the system specifications and deliverables
- Provided representative application benchmarks
- Provided IBM access to Intrepid and Mira for software development and testing at scale

8

Evolution from P to Q

Design Parameters	BG/P	BG/Q	Difference
Cores / Node	4	16	4x
Hardware Threads	I	4	4x
Concurrency / Rack	4,096	65,536	16x
Clock Speed (GHz)	0.85	1.6	1.9x
Flop / Clock / Core	4	8	2x
Flop / Node (GF)	13.6	204.8	15x
RAM / core (GB)	0.5	I	2x
Mem. BW/Node (GB/sec)	13.6	42.6	3x
Latency (MPI zero-length, nearest-neighbor node)	2.6 μs	2.2 μs	~15% less
Bisection BW (32 racks)	1.39TB/s	13.1TB/s	9.42x
Network	3D Torus + Collectives	5D Torus	Smaller diameter
GFlops/Watt	0.77	2.10	3x
Instruction Set	32 bit PowerPC + DH	64 bit PowerPC + QPX	New vector instructions
Programming Models	MPI + OpenMP	MPI + OpenMP	
Cooling	Air	Water	

Blue Gene System Architecture

Blue Gene/Q

3. Compute card:One chip module,16 GB DDR3 Memory,Heat Spreader for H₂O Cooling

4. Node Card:32 Compute Cards,Optical Modules, Link Chips; 5D Torus

2. Single Chip Module

1. Chip: 16+2 cores

5b. IO drawer: 8 IO cards w/16 GB 8 PCle Gen2 x8 slots 3D I/O torus

7. System: 48 racks, 10PF/s

5a. Midplane:16 Node Cards

6. Rack: 2 Midplanes

Blue Gene/Q Node Card Assembly

- 32 Compute Cards per Node Card
- Power efficient processor chips allow dense packaging
- Node Card contains a 2x2x2x2x2 using high bandwidth / low latency electrical interconnect
- Compute Node Card assembly is water-cooled

Blue Gene/Q Compute Card

- Node has 1 BQC chip + 72 SDRAMs (16GB DDR3)
- Memory is soldered on for high reliability

BlueGene/Q Compute Chip

System-on-a-Chip design: integrates processors, memory and networking logic into a single chip

360 mm² Cu-45 technology (SOI)

- ~ 1.47 B transistors

■ 16 user + 1 service processors

- 16 compute cores
- 17th core for system functions (OS, RAS)
- plus 1 redundant processor
- all processors are symmetric
- L1 I/D cache = 16kB/16kB
- L1 prefetch engines

Crossbar switch

- Connects cores via L1P to L2 slices
- Aggregate read rate of 409.6 GB/s

Central shared L2 cache

- 32 MB eDRAM
- 16 slices

Dual memory controller

- 16 GB external DDR3 memory
- 42.6 GB/s bandwidth

Chip-to-chip networking

- Router logic integrated into BQC chip
- DMA, remote put/get, collective operations
- -11 network ports

External IO

- PCle Gen2 interface

BG/Q Chip

- Design based on simple, power efficient PowerPC core:
 - Full PowerPC compliant 64-bit CPU, PowerISA v.206
 - A2 core also used in IBM PowerEn chip
 - Runs at 1.6 GHz @ 0.8V
- Unique BG/Q ASIC with special features:
 - 4-wide SIMD floating point unit (QPX)
 - Transactional Memory & Speculative Execution
 - Fast memory based atomic operations
 - Stream and list based prefetching
 - WakeUp Unit
 - Universal Performance Counters

BG/Q Core

- In-order execution
- 4-way Simultaneous Multi-Threading
- 32 64 bit integer registers, 32 256 bit FP registers
- Dynamic branch prediction
- Functional Units:
 - IU instructions fetch and decode
 - XU Branch, Integer, Load/Store instructions
 - AXU Floating point instructions
 - Standard PowerPC instructions
 - QPX 4 wide SIMD
 - MMU memory management (TLB)
- Instruction Issue:
 - 2-way concurrent issue 1 XU + 1 AXU
 - A given thread may only issue 1 instruction per cycle
 - Two threads may issue 1 instruction each cycle

L1 Cache & Prefetcher

- Each Core has it's own L1 cache and L1 Prefetcher
- L1 Cache:
 - Data: 16KB, 8 way set associative, 64 byte line, 32 byte load/store interface, 6 cycle latency
 - Instruction: 16KB, 4 way set associative, 3 cycle latency
- L1 Prefetcher (L1P):
 - 1 prefetch unit for each core
 - 32 entry prefetch buffer, entries are 128 bytes, 24 cycle latency
 - Operates in List or Stream prefetch modes
 - Operates as write-back buffer

L1 Prefetcher

- Each core has a prefetch unit that attempts to reduce the latency for L1 misses
- Prefetch buffer holds 32 128 byte cache lines
- Stream Prefetching:
 - Default mode
 - Attempts to identify sequences of increasing contiguous loads based on L1 misses and prefetch data for upcoming loads
 - Adaptively adapts prefetch depth from 16 streams x 2 deep to 4 streams x 8 deep
- List Prefetching:
 - 4 units per core, 1 per hardware thread
 - Allows prefetching of arbitrary memory access patterns accessed repeatedly
 - Activated by program directives bracketing sections of code
 - Record pattern on first loop iteration and playback for subsequent iterations
 - List is adaptively adjusted for missing or extra cache misses

L1 miss List address

List-based "perfect" prefetching has tolerance for missing or extra cache misses

BG/Q Crossbar Switch

L2 Cache & Memory

L2 Cache: → L2 slice 0 Shared by all cores → L2 slice 1 Divided into 16 slices connected via crossbar switch to each core → L2 slice 2 32 MB total, 2 MB per slice L2 slice 3 16 way set assoc., write-back, LRU replacement, 82 cycle latency DRAM 0 L2 slice 4 Supports memory speculation and atomic memory operations → L2 slice 5 Serves a point of coherency, generates L1 invalidations L2 slice 6 Has prefetch capabilities based on hints from L1P Crossbar **Memory:** ←► L2 slice 8 Two on chip memory controllers → L2 slice 9 Each connects to 8 L2 slices via 2 ring buses → L2 slice 10 Each controller drives a 16+2 byte DDR-3 channel at 1.33 Gb/s → L2 slice 11 Peak bandwidth is 42.67 BG/s (excluding ECC) DRAM 1 ← L2 slice 12 Latency > 350 cycles ← L2 slice 13 → L2 slice 14 → L2 slice 15

QPX Overview

- Unique 4 wide double precision SIMD instructions extending standard PowerISA with:
 - Full set of arithmetic functions
 - Load/store instructions
 - Permute instructions to reorganize data
- 4 wide FMA instructions allow 8 flops/inst
- FPU operates on:
 - Standard scale PowerPC FP instructions (slot 0)
 - 4 wide SIMD instructions
 - 2 wide complex arithmetic SIMD arithmetic
- Standard 64 bit floating point registers are extended to 256 bits
- Attached to AXU port of A2 core A2 issues one instruction/cycle to AXU
- 6 stage pipeline
- 32B (256 bits) data path to/from L1 cache
- Compiler can generate QPX instructions
- Intrinsic functions mapping to QPX instructions allow easy QPX programming

Transactional Memory and Speculative Execution

Transactional Memory implemented in L2:

- Sections of code are annotated to be executed atomically and in isolation using pragma tm_atomic
- Changes from speculative threads kept separate from main memory state
- Speculatively written data only available to thread writing it
- At end of speculative section can revert or commit changes
- Hardware identifies conflicts: read-after-write, write-after-read, write-after-write
- Can store up to 30MB of speculative state

Speculative Execution implemented in L2:

- Sections of code are annotated to be executed speculatively in parallel using pragmas: speculative for, speculative sections
- Sequential code is partitioned into tasks which are executed speculatively in parallel
- Data written by sequentially earlier threads is forwarded to later threads
- Conflicts are detected by hardware at 8 bytes resolution

Fast Atomics

- Provided in hardware by the L2
- 8 byte load & store operations that can alter the value at any memory address
- Atomics use standard load & store instructions with special high order address bits
- Allow fast synchronization and concurrent data structures a ticket lock can by implemented to run 30x faster
- Load Operations:
 - LoadClear, LoadIncrement, LoadDecrement, LoadIncrementBounded, LoadDecrementBounded
- Store Operations:
 - StoreAdd, StoreAddCoherenceOnZero, StoreTwin, StoreOr, StoreXor, StoreMaxUnsigned, StoreMaxSigned
- Memory for Atomics must be reserved with Kernel_L2AtomicsAllocate()

WakeUp Unit

- Each core includes a WakeUp Unit
- Improves overall performance by reducing the cost of spin or polling loops
 - Polling threads issue instructions that occupy issues slots
- Threads can configure the WakeUp unit to watch for writes to a range of memory addresses
- Threads can be suspended until a watched address is written to
- Thread is reactivated when watched address is written to
- Improves power efficiency and resource utilization

Hardware Performance Counters

- Universal Performance Counter (UPC) unit collects hardware performance events from counters on:
 - 17 cores
 - L1P's
 - Wakeup Units
 - 16 L2 slices
 - Message, PCIe, and DEVBUS units
- Wide range of hardware events
- Network Unit maintains a separate set of counters

Inter-Processor Communication

Network Performance

- All-to-all: 97% of peak
- Bisection: > 93% of peak
- Nearest-neighbor: 98% of peak
- Collective: FP reductions at 94.6% of peak
- On chip per hop latency ~40 ns
- Allreduce hardware latency on 96k nodes ~ 6.5 us
- Barrier hardware latency on 96k nodes ~ 6.3 us

5D torus network:

- Virtual cut-through routing with Virtual Channels to separate system and user messages
- 5D torus achieves high nearest neighbor bandwidth while increasing bisectional bandwidth and reducing hops
- Allows machine to be partitioned into independent sub machines. No impact from concurrently running codes.
- Hardware assists for collective & barrier functions over COMM WORLD and rectangular sub communicators
- Half rack (midplane) is 4x4x4x4x2 torus
- Last dimension is always 2

■ No separate Collectives or Barrier network:

- Single network used for point-to-point, collectives, and barrier operations
- Nodes have 10 links with 2 GB/s raw bandwidth each
 - Bi-directional: send + receive gives 4 GB/s
 - 90% of bandwidth (1.8 GB/s) available to user
- Additional 11th link for communication to IO nodes
- Optical links between midplanes, electrical inside midplane
- Hardware latency
 - Nearest: 80ns
 - Farthest: 3us (96-rack 20PF system, 31 hops)

Network Unit

- Each chip has 11 network send units and 11 receive units:
 - Each can transmit and receive at 2 GB/s allows simultaneous send and receive
 - Total bandwidth of 44 GB/S
 - Total node torus bandwidth is 19x BG/L and 7.8x BG/P
 - 10 links used to form a 5D torus between compute nodes
 - 1 link used to connect to an IO node on "Bridge" nodes
- 16 hardware network injection FIFOs and 16 network reception FIFOs for: user point-to-point, intra-node, high priority, collectives, and system data
 - Packets places in injection FIFOs are sent out via the Sender
 - Packets received for the node are placed in the reception FIFOs
- Receivers contain 7 Virtual Channel packet buffers for: point-to-point, high priority, system,
 collectives
- Arbitration logic routes packets from Receivers and Injection FIFOs to Senders
- Collective operations are handled by Central Collective Logic
- Contains performance counters: 4 per Sender, 2 per Receiver

Figure 1. The BG/Q Network Device (ND) Logic

Messaging Unit

- Provides the functionality of a network interface card
- Interface between the network and the BG/Q memory system, injects and pulls packets from network FIFOs
 - Messaging Unit is connected to node cross-bar switch with
 3 master and 1 slave port
- Supports direct puts, remote gets, and memory FIFO messages
- Maintains memory pointers to 544 injection memory
 FIFOs and 272 memory reception FIFOs
 - Messages sent by writing descriptor into injection FIFO
- Each Message Unit has 16 Injection Message Engines and 16 Reception Message Engines each tied to a network FIFO
 - Injection engines are assigned a descriptor, pull data and packetize
 - Reception engines pull data from reception FIFOs and write to in-memory FIFOs, or specified memory location
- Can raise interrupts at reception memory FIFO free space threshold
- Provides hardware performance counters

BG/Q IO

- IO design similar to BG/L and BG/P
- IO Nodes handle function shipped IO calls to parallel file system client
- IO node hardware is identical to compute node hardware
- IO nodes run Linux and mount file system
- Compute Bridge Nodes use 1 of the 11 network links to link to IO nodes
- IO nodes connect to 2 bridge nodes
- IO nodes use 2 repurposed torus links for PCle Gen2 x8 communication at 4GB/S ↔ IB/10G
 Ethernet ↔ file system & world
- IO nodes are not shared between compute partitions

Blue Gene/Q Software High-Level Goals & Philosophy

- Facilitate extreme scalability
 - Extremely low noise on compute nodes
- High reliability: a corollary of scalability
- Familiar programming modes such as MPI and OpenMP
- Standards-based when possible
- Open source where possible
- Facilitate high performance for unique hardware:
 - Quad FPU, DMA unit, List-based prefetcher
 - TM (Transactional Memory), SE (Speculative Execution)
 - Wakeup-Unit, Scalable Atomic Operations
- Optimize MPI and native messaging performance
- Optimize libraries
- Facilitate new programming models

Blue Gene Q Software Innovations

Standards-based programming environment

- − LinuxTM development environment
 - Familiar GNU toolchain with glibc, pthreads, gdb
- Red Hat on I/O node
- XL Compilers C, C++, Fortran with OpenMP 3.1
- Debuggers: Totalview
- Tools: HPC Toolkit, TAU, PAPI, Dyinst, Valgrind

Message Passing

- Scalable MPICH2 providing MPI 2.2 with extreme message rate
- Efficient intermediate (PAMI) and low-level (SPI) message libraries, documented, and open source
- PAMI layer allows easy porting of runtimes like GA/ ARMCI, Berkeley UPC, etc,

Compute Node Kernel (CNK) eliminates OS noise

- File I/O offloaded to I/O nodes running full Linux
- GLIBC environment with a few restrictions for scaling

Flexible and fast job control – with high availability

- Integrated HPC, HTC, MPMD, and sub-block jobs
- Noise-free partitioned networks as in previous BG

New for Q

- Scalability Enhancements: the 17th Core
 - · RAS Event handling and interrupt off-load
 - · Event CIO Client Interface
 - Event Application Agents: privileged application processing
- Wide variety of threading choices
- Efficient support for mixed-mode programs
- -Support for shared memory programming paradigms
- -Scalable atomic instructions
- -Transactional Memory (TM)
- –Speculative Execution (SE)
- -Sub-blocks
- -Integrated HTC, HPC, MPMD, Sub-blocks
- Integrated persistent memory
- High availability for service nodes with job continuation
- –I/O nodes running Red Hat

Mira Science Applications

BG/P version as is on BG/Q

Apps	BQ/P Ratio	Comments
DNS3D	11.8	2048^3 grid, 16K cores, 64 ranks/node
FLASH	5.5 (<mark>9.1</mark>)	rtflame, 2K cores, 64 ranks/node rtflame, 16K cores, 8 ranks/node, 8 threads/rank, no MPI-IO
GFMC	10.5	c12-test, 2K cores, 8 ranks/node, 8 thrds/rank
GTC	10.8	M0720, 16K cores, 16 ranks/node, 4 thrds/rank
GFDL	11.9	Atm, 2K cores, 16 ranks/node, 4 thrds/rank
MILC	6.1	32^3x64 lattice, 2K cores, 64 ranks/node, no QPX
NEK	8.5	med case, 1K cores, 32 ranks/node, no QPX
NAMD	9.7	ATPase bmk, 2K cores, 16 ranks/node
GPAW	7.6	Au_bulk5x5x5, 2K cores, 16 ranks/node
LS3DF	8.1	ZnOTe, 8K cores, ESSLsmp, I/O sensitive